#9: RecPack and Modularized Personalization by Froomle with Lien Michiels and Robin Verachtert

In episode nine of Recsperts we introduce RecPack which is the new recommender package for Python for easy, consistent and extensible experimentation and benchmarking. I talk to Lien Michiels and Robin Verachtert who are both industrial PhD students at the University of Antwerp. They also share how they provide modularized personalization for customers in the news and ecommerce sector at Froomle. In adition, we learn more about their research on filter bubbles as well as recommender model degradation and retraining.
In episode number nine of Recsperts we talk with the creators of RecPack which is a new Python package for recommender systems. We discuss how Froomle provides modularized personalization for customers in the news and e-commerce sectors. I talk to Lien Michiels and Robin Verachtert who are both industrial PhD students at the University of Antwerp and who work for Froomle. We also hear about their research on filter bubbles as well as model drift along with their RecSys 2022 contributions.

In this episode we introduce RecPack as a new recommender package that is easy to use and to extend and which allows for consistent experimentation. Lien and Robin share with us how RecPack evolved, its structure as well as the problems in research and practice they intend to solve with their open source contribution.
My guests also share many insights from their work at Froomle where they focus on modularized personalization with more than 60 recommendation scenarios and how they integrate these with their customers. We touch on topics like model drift and the need for frequent retraining as well as on the tradeoffs between accuracy, cost, and timeliness in production recommender systems.

In the end we also exchange about Lien's critical reception of using the term 'filter bubble', an operationalized definition of them as well as Robin's research on model degradation and training data selection.

Enjoy this enriching episode of RECSPERTS - Recommender Systems Experts.

Links from the Episode:

Papers:

General Links: